Motors driving dosing pumps at a water treatment works |
Aside from the
technological issues associated with the motors themselves, there are other
system-related issues which are in many cases much more important. Probably the
first question I want answered when looking at motor replacement is: “what are
the annual running hours of the motor?” Remember that in energy terms, we are
looking here at kWh, and while efficiency reduces kW, if the hours (h) of
running are small, the total energy savings from retrofitting will also be
small. Low-efficiency motors that run continuously in plants that run around
the clock are therefore always attractive retrofit candidates, while a motor
that runs intermittently in a dayshift-only operation will probably not be
interesting, unless it is so under-loaded that its efficiency is only a
fraction of full-load efficiency. In
this latter instance, you may even want to install a smaller
standard-efficiency motor that is being replaced elsewhere to limit costs while
still saving electrical energy.
The next system-related
issue to consider in terms of motors are the drive systems associated with each
motor. These entail things such as gearboxes, chains, belts, couplings and
shafts. You need to consider not only the technological issues here (for
example, cogged belts are reported to use 2% less energy than standard v-belts
without any changes required to pulley systems) but also the maintenance
issues. Key maintenance issues from an energy efficiency perspective could
include:
- · Lubrication of bearings, chains and gearboxes;
- · Alignment of shafts, couplings, sprockets and pulleys;
- · Tension levels in belts and chains
It is important
to include checks of these types of issues as tasks in your preventive maintenance
programme.
The final
system-related issue is that of the process being driven by the motor. An
efficient motor driving an inefficient process still constitutes an inefficient
operation. Hence ask yourself if that agitator is of an efficient design, if
the pressure drop in that pumping system as low as it could be or if that fan
design is best for the application, as examples. Delve deep into your processes
and look at the constraints around your plant, remembering that the overall
process only has the capacity of the constraint. It makes no sense to run
non-constraining processes at higher throughputs than the constraint, leading
to unnecessary circulation, waiting times (with motors running in many cases) or
higher flow rates than needed in the case of pumped systems (remember that when
pumping fluids, pressure drop varies with the square of flow rate). These types
of issues are unique to each individual industrial site, require comprehensive
process knowledge, and in my experience are the most neglected when it comes to
energy efficiency programmes and projects. They should in fact be addressed first, with motor replacement options only investigated once underlying processes have been optimised.
You have posted such a very good article which every establishment owner/ industrial company will benefit through applying these tips on saving electricity.
ReplyDeletewoertz
This comment has been removed by the author.
Delete